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Abstract— In this paper, a modified version of an adaptive filtering technique, called fractional affine projection 

algorithm, is proposed for the dual-channel speech enhancement problem. The new adaptive filtering approach uses 

the fractional derivative together with the conventional first-order derivative of the mean-square error in its update 

equation. The update rule shows nonlinear behavior of step-size with respect to input signal. The proposed method is 

compared with the conventional methods of the least-mean-squares, normalized least-mean-squares, fractional least-

mean-squares, normalized fractional least-mean-squares, and affine projection algorithms, both subjectively and 

objectively. The quality of noisy speech processed by applying different algorithms is evaluated objectively through 

the SNR and PESQ test measurements, and subjectively by conducting listening tests. Experimental results show that 

the fractional affine projection algorithm outperforms the conventional adaptive filtering methods in the sense of 

mean-square-error and quality of enhanced speech.  

Keywords- Speech Enhancement; Dual Channel speech Enhancement; Adaptive Filtering; Fractional Signal Processing; 

Affine Projection Algorithms. 

 

 

I. INTRODUCTION  

As many communication signals, the quality of 
speech signal will be affected by many phenomena 
during transmission of signal through the acoustic 
communication channel. The result of this affection 
will be unpleasant and will cause the quality reduction 
and intelligibility impairing of speech signal. To 
reduce the deficiency of acoustic noise on speech 
signal, many enhancement methods have been 
proposed [1]. The adaptive filtering methods are 
among common techniques which are employed in 
speech enhancement systems [2]. An example of such 
systems is the dual-channel speech enhancement, 
which uses two microphones for capturing 
contaminated speech and noise signal. 

So far, many gradient-based algorithms have been 
proposed. The Least-Mean-Squares (LMS) algorithm 
is one of the common algorithms used [3]. The 
normalized version of LMS (i.e., NLMS) outperforms 
the LMS algorithm in the sense of stability. The 
Affine Projection Algorithm (APA) is obtained by 
generalization and modification of the NLMS 
algorithm [4]. Other adaptive filtering techniques 
such as Recursive Least-Squares (RLS) are also used 
for speech enhancement [5]. 

The concept of fractional-order operators have been 
investigated extensively in recent years in various 
signal processing theories and techniques [6]–[9]. 
Recently, a new adaptive LMS-based algorithm 
which is called Fractional LMS (FLMS) has been 
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proposed in some signal processing applications such 
as system identification [10]-[11]. FLMS employs the 
fractional-order derivative together with the 
conventional first-order derivative of mean-square 
error in its structure. It has also been shown that the 
FLMS algorithm outperforms LMS in speech 
enhancement. Furthermore, by normalization of the 
FLMS algorithm, a new adaptive filtering technique, 
called Normalized Fractional LMS (NFLMS), has 
been proposed for the enhancement of speech signals 
corrupted by noise [12]. 

In this paper, we propose a modified adaptive 
filtering method for dual-channel speech 
enhancement which is called Fractional Affine 
Projection Algorithm (FAPA). The proposed method 
has two main features. First, it exploits the benefits of 
APA, which is known to have a better approximation 
of the conventional recursive Newton method [13]. 
Moreover, it has been shown that the Affine 
projection algorithm has better convergence rate than 
LMS [14]. Second, the proposed method employs 
fractional derivatives in the definition of its update 
rule to improve the convergence performance of the 
conventional Affine projection.  

The organization of this paper is as follows: Section 
2 describes the structure of the dual-channel speech 
enhancement system together with the techniques of 
LMS, NLMS, FLMS, NFLMS, and APA. In Section 
3, our proposed algorithm (i.e., FAPA) is introduced. 
Section 4 presents the experimental results and the 
comparisons made with the traditional adaptive 
filtering methods which are used in the context of 
speech enhancement. Concluding remarks are given 
in Section 5. 

II. BACKGROUND 

A. Speech Enhancement 

Fig. 1 shows the block diagram for a general two-
channel enhancement system. The clean speech signal 
s(n) is assumed to be present in only one channel, 
which is then corrupted by background noise b(n) to 
generate the noisy speech signal d(n). The second 
channel has the reference noise signal u(n). The 
adaptive filter W(z) tries to model the acoustic path 
transfer function P(z). As a result, the filter output y(n) 
becomes an estimate of only noise present in d(n). 
Finally, the output of the structure e(n) will be an 
estimate of the clean speech signal s(n). 

The output of the adaptive filter is given by: 

( ) ( ),Ty n n w u
 

             (1) 

where w is the weight vector. The Wiener-Hopf 

solution opt

d -1

u uw R r  gives the optimal weight vector 

for Eq. (1) by minimizing mean-square-errors of the 
following cost function:  

 
2

.TJ E d w u                      (2) 

However, this solution introduces a high order of 
computational complexity. A simple recursive 
solution to the classical Wiener filtering problem is 
given by gradient-based algorithms such as the 
steepest-descent and regularized Newton techniques. 

 

Figure 1: Dual-channel speech enhancement structure. 

In the steepest-descent optimization method, the 
weight vector is made to evolve in the direction of 
negative gradient: 

  

 

2( 1) ( ) ( ) ,
2

( ) ( ) .d

n n E e n

n n





    
 

  u uu

w w

w r R w

                   (3) 

Here, e(n) is the error signal, μ is the step size, dur  

is the cross-correlation vector, and uuR is the 

correlation matrix. 

In the Newton recursion method, the second 
derivative of mean-square-error is used for 
adaptation: 

   
1

( 1) ( ) ( ) ,dn n n 


    uu u uuw w R I r R w   (4) 

where   is the regularization parameter. 

B. LMS Algorithm 

The LMS algorithm is basically a simplification of 
steepest descent method, in which the gradient vector 
is estimated from available data when we operate in 
unknown environment [5]. 

To develop an estimate of the gradient vector, the 
most obvious strategy is to substitute estimates of the 

correlation matrix uuR and cross-correlation vector 

dur in the steepest descent update Eq. (3). The 

instantaneous estimates of uuR and dur are given 

respectively as: 

ˆ ( ) ( ) ( ),Tn n n
uu

R u u                                (5) 

and 

ˆ ( ) ( ) ( ).d n d n nur u              (6) 

Substituting these estimates in the steepest-descent 
algorithm, we get the following update rule for the 
tap-weight vectors: 

 ( 1) ( ) ( ) ( ) ( ) ( ) .Tn n n d n n n   w w u u w          (7) 

      By defining the error signal: 

( ) ( ) ( ),e n d n y n                            (8) 

the final update formula for the tap weights is given 
as:  

( 1) ( ) ( ) ( ).n n n e n  w w u             (9) 

C. NLMS Algorithm 

The adjustment applied to the tap-weight vector in 
LMS update rule is directly proportional to the tap-

Speech Source          + 
 

s (n)        

  Recovered Signal 
 
 

e(n) 

  u (n)  
 

 

Noise Source 

W(z) 

b (n)        + 

P(z) 

 Noisy Speech 

 

d(n)=s(n)+b(n)     + 

+ 
  _ 

 

y(n) 
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input vector, u(n). Therefore, when u(n) is large, 
LMS filters suffer from a gradient noise amplification 
problem. To overcome this difficulty, we may use the 
normalized LMS (NLMS) filter [13]. 

In structural terms, the NLMS filter is exactly the 
same as the standard LMS filter, but differs only in 
the way in which the weights are updated. The 
normalized LMS filter is manifestation of the 
principle of minimum disturbance [5]. From one 
iteration to the next, the weight vector of the adaptive 
filter should be changed in minimal manner, subject 
to a minimum constraint imposed on updated filter’s 
output. The tap-weight adaptation rule is given by: 

 

2
( 1) ( ) ( ) ( ),

( )
n n n e n

n




  


w w u

u
         (10) 

where 
2

( )nu
 
is the power of input vector and 

0  is a constant factor. 

D. Fractional LMS 

In LMS, the weights are optimized in a manner 
that the error is minimized in mean-square sense. 
However, except in very special cases, the LMS 
algorithm is in general a sub-optimal technique [5]. In 
the FLMS, the weight update equation for the kth-
element, having only the first derivative term, is given 
by: 

( )
( 1) ( ) ,

( 0,1,2,..., 1)

k k

k

J n
w n w n

w

k M




  


                                 

(11) 

where M is the number of tap weights and n is the 
current time index. In deriving the fractional LMS 
(FLMS) algorithm, we have to use fractional 
derivatives in addition to the first derivative. The 
update relation for the kth-element of the weight 
vector in FLMS is given by [10]:

  

1

( ) ( )
( 1) ( ) ,

v

k k f v

k k

J n J n
w n w n

w w
 
 

   
 

            

(12) 

where ν (0 <ν < 1) is a real number, 
1  is the first-

order step size, and 
f is the fractional step-size. 

The cost function given in Eq. (2) can be expanded 
in the following manner: 

1
2

0

1 1

0 0

( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( ) ( ).

M

i

i

M M

i j

i j

J n d n d n w n u n i

w n u n i w n u n j





 

 

  

  



   

             (13) 

By taking the vth-order fractional derivative of the 
above cost function, we obtain 

( )
2( ( ) ( )) ( ),

v
v

kv

k

J n
e n u n k D w n

w


  


                      (14) 

where
v

v

v

k

D
w





 is the Riemann-Liouvilli 

differential operator, which is defined 

for  and n    with lower terminal at zero as 

follows [10]: 

1

0

1
( ) ( ) ( ) .

( )

n
x

nd
D f x x t f t dt

n dx

 



  
  
   

     (15) 

The fractional derivative with the order α of the 

power function  px  can be written as: 

( 1)
.

( 1)

p pp
D x x

p

 



 

  

                       (16) 

By applying the above operator to Eq. (14), we 
obtain 

  1( ) 1
2 ( ) ( ) ( ).

(2 )

v
v

kv

k

J n
e n u n k w n

vw


  

 
         (17) 

After substituting the derivative terms in Eq. (12) 

and noting that 
1 1( ) ( 1),v v

k kw n w n    we obtain the 

final update relation for the weight vectors of the 
FLMS algorithm as: 

1

1

1

1

( ) ( ) ( )

( )
( ) ( ) 0

(2 )
( 1)

( ) ( ) ( )

( )
( ) ( ) , 0

(2 )

k

v

k

f k

k

k

v

k

f k

w n e n u n k

w n
e n u n k w

v
w n

w n e n u n k

w n
e n u n k w

v













 


    

  
 


  
  

  

(18) 

where (.)  denotes the gamma function. It is also 

noteworthy that from the standpoint of 
implementation, we have used here a modified 
version of the update rule as compared with that given 
in [10]. The above equation can be written as follows: 

 
1

1

( 1) ( )

( )
sign( ( )) ( ) ( ) ,

(2 )

k k

v

k

f k

w n w n

w n
w n e n u n k

v
 



  

 
  
  
 

   

(19) 

where sign(.) is the sign function. Here, it is clearly 
observed that the update rule of FLMS uses a 
modified step-size as compared with the conventional 
LMS algorithm given in Eq. (7). 

E. Normalized Fractional LMS 

The NFLMS idea is based on the fact that the 
normalized version of LMS algorithm has better 
performance than the standard LMS method. 
Furthermore, it has been shown that the fractional 
LMS (FLMS) algorithm, which is an improved 
version of the conventional LMS, has faster 
convergence rate than LMS [10]. Thus, it is expected 
that using normalized version of FLMS (i.e., NFLMS) 
instead of FLMS leads to a better performance of 
adaptive filter. The update rule for NFLMS [12] is 
given by: 

1

1 2

( 1) ( )

( ) ( ) ( )
(sign( ( ))) .

(2 ) ( )

k k

k

k

f k

w n w n

w n e n n
w n

v n
 





  

  
  
     

u

u

        

                                                                                (20) 
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Here,   is the fractional order, 
1  is the first order 

step size, f  is the fractional-order step-size, and 

0.   

F. Affine Projection Algorithm 

The affine projection algorithm (APA) [4] was 
derived as a generalization of the well-known 
normalized least-mean squares (NLMS) algorithm, in 
the sense that each tap weight vector update of NLMS 
is viewed as a 1×L affine projection, whereas, in 
APA, the projections are made in multiple 
dimensions. Consider an adaptive filter of length L, 
defined by the coefficients vector 

0 1 1( ) [ ( ), ( ),..., ( )],Ln w n w n w nw where n is the 

discrete-time index. By substituting: 

ˆ ( ) ( ) ( ),Tn n n
uu

R U U                         (21) 

ˆ ( ) ( ) ( ),d n n nur d U
                                                

(22) 

in the update rule of Newton recursion (Eq. (4)), the 
equations that define the classical APA are obtained 
as follows: 

( ) ( ) ( ) ( 1),Tn n n n  e d U w                         (23) 

1

( ) ( 1)

( ) ( ) ( ) ( ),T

p

n n

n n n n 


 

   

w w

U I U U e
            (24) 

where ( ) [ ( ), ( 1),..., ( 1)]Tn d n d n d n P   d is a 

vector containing the most recent P samples of the 
reference (or desired) signal, with P denoting the 
projection order, the matrix 

( ) ( 1)

( )

( 1) ( )

u n u n P

n

u n L u n P L

  
 


 
     

U      

is the input signal matrix, the constant  denotes the 

step-size parameter, δ is the regularization constant, 
and IP is the P P  identity matrix. Here, it can be 
easily noticed that for P = 1, the update rule for the 
normalized least-mean-squares (NLMS) algorithm is 
obtained. 

III. PROPOSED METHOD 

In this paper, we propose new adaptive filtering 
technique based on fractional derivative of the mean-
square-error cost function. 

A. Fractional Affine Projection Algorithm 

As discussed in previous section, affine 
projection algorithms are made in multiple 
dimensions which cause better approximations of rdu 
and Ruu in Newton recursive Eq. (4). By rewriting the 
Newton recursive equation, we propose the idea of 
fractional affine projection by adding the fractional 
derivative term to the conventional elements of the 
update equation in the affine projection algorithm. 

 

 

To obtain the final update rule for the proposed 
adaptive filtering method, we should first compute the 
fractional derivative of the cost function given in Eq. 
(2). For this purpose, Eq. (2) is expanded as: 

1
2

0

1 1

0 0

( ) [ ( )] 2 ( ) ( ) ( )

( ) ( ) ( ) ( ) .

M

i

i

M M

i j

i j

J n E d n E d n w n u n i

E w n u n i w n u n j





 

 

 
   

 

 
   

 



       

(25) 

Now, by applying the fractional derivative operator to 
the above relation, we obtain 

1

0

1 1

0 0

( ) ( ) ( )
( )

2

( ) ( ) ( ) ( )

.

M
v

iv
i

v v

k k

M M
v

i j

i j

v

k

E d n w n u n i
J n

w w

E w n u n i w n u n j

w





 

 

 
  

  
 

 

 
   

 






           

(26)

 

Interchanging the expectation and the fractional 
derivative operators gives 

1

0

1 1

0 0

( ) ( )
( )

2 ( )

( ) ( ) ( ) ( )

,

M
v

iv
i

v v

k k

M M
v

i j

i j

v

k

w n u n i
J n

E d n
w w

w n u n i w n u n j

E
w





 

 

  
   

   
   

  
  

  
    

  
  

 
 
 



 
     

(27) 

This can be simplified as: 

 

1 1

0 0

1

0

( ( ) ( ))( )
2 ( )

( ) ( ) ( ) ( )

( ) ( )
2 ( )

( )
2 ( ) ( ) ( )

(

vv

i

v v

k k

M M
v

i j

j i

v

k

v

i

v

k

vM
k

jv
j k
j k

v

k

w n u n iJ n
E d n

w w

w n w n u n i u n j

E
w

w n u n i
E d n

w

w n
E w n u n k u n j

w

w
E

 

 






  
   

  

  
    

  
  

 
 
 

   
   

  

 
 

   
 

 








 
 

2

2)
( ) .

v

k

n
u n k

w

  
 

  

                                                                  

(28) 

By applying the fractional derivative operator of Eq. 
(17), the above relation can be rewritten as: 
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1 1
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2 2
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( ) 1
2 ( ) ( ) ( )
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( ) ( )
2 ( ) ( )
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2 ( )( ( )) .

(2 ) (2 )
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(29) 

From the stand point of the algorithm 
implementation, we use here the following 
approximation: 

 
22

2 2

1
2 ( ) ( )

(2 ) (2 )

1
2 ( )( ( )) .

(2 )

v

k

v

k

E w n u n k
v v

E w n u n k
v





 
 

   

 
 

  

           

(30) 

Using this approximation in Eq. (28), we obtain

 

 

 

1

1 1

0

1

1 1
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2 ( ) ( ) ( )
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( )
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k
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k

j

j

v

k

v M
k

j

j

J n
E w n d n u n k

vw

w n
E w n u n j u n k

v

w n
E d n u n k

v

w n
w n E u n j u n k

v



 





 



 
   

   

 
   

  

  
 

  
 





      

                                                                                

(31) 

Now, based on the update rule for the steepest-
descent method (i.e., Eq. (3)), we derive a modified 
relation for the steepest method as follows:  

1

( ) ( )
( 1) ( ) ,

v

k k f v

k k

J n J n
w n w n

w w
 
 

   
 

            

(32) 

where the last term (i.e.,
( )v

v

k

J n

w




) is given by Eq. (31). 

Comparing Eq. (4) with the update rule for steepest-
descent method (i.e., Eq. (3)), it is clearly observed 
that the Newton recursive method is modified version 
of the steepest-descent method in the sense of 
different step-sizes used. In the same manner, we 

choose 1  and 
f in Eq. (31) as follows: 

 
1

1 1  


 uuR I           (33) 

 
1

f f  


 uuR I           (34) 

By substituting Eq. (30) in Eq. (31), and defining 
the following vectors: 

1( ) d  uu uZ R I r                        (35) 

1( ) ,  uu uuG R I R w                        (36) 

We obtain the modified Newton recursive update rule 
in its simplified form as: 

1

1

1

1

( ) { ( ) ( )}

( )
{ ( ) ( )} 0

(2 )
( 1)

( ) { ( ) ( )}

( )
{ ( ) ( )}. 0

(2 )

k

v

k

f k

k

k

v

k

f k

w n k k

w n
k k w

v
w n

w n k k

w n
k k w

v













 


    

  
 


  
  

Z G

Z G

Z G

Z G              

                                           

(37) 

The above relation can equally be used as the 
update relation for the kth-element of the coefficient 
vector w in the proposed fractional affine projection 
algorithm (FAPA), provided that we use estimated 
values of rdu and Ruu as given in Eqs. (21) and (22). 
Based on this assumption, the new values of vectors 

Z  and G can be given as: 

 
11

,T T

P
P




 Z U UU I d           (38)

 
11

.T T T

P
P




 G U UU I U w           (39) 

Equation (37) can be rewritten as follows: 

1

1

1

1

( )

( )
{ ( ) ( )} 0

(2 )
( 1)

( )

( )
{ ( ) ( )}, 0

(2 )

k

v

k

f k

k

k

v

k

f k

w n

w n
k k w

v
w n

w n

w n
k k w

v

 

 







 
     
 

  


 
   
  
 

Z G

Z G

                                                                                

(40)

 

This relation can be summarized as: 

1

1

( 1) ( )

( )
(sign( ( ))) { ( ) ( )}.

(2 )

k k

v

k

f k

w n w n

w n
w n k k

v
 



  

 
  
  
 

Z G
(41) 

The above equation shows that the new algorithm 
modifies the step-size in a nonlinear way. The 
nonlinear step-size relationship given in parenthesis 
can be expressed by the following function:  

1/2
( ) (1 sign( )),step sizef w w w  

            

(42) 

 where v = 0.5 and  µ1 = µf = 1. The step-size function 
of Eq. (42) is plotted in Fig. 2. 
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IV. EVALUATIONS 

A. Experimental Conditions and Databases  

For our simulations, we use speech signals from the 
NOIZEUS database [15]. As noise reference, we take 
noises from the NOISEX-92 database [16]. 

In order to produce noisy speech, we use two 
strategies. First, we use a 30th-order FIR filter as 
acoustic path and produce noisy signal (i.e., d(n)) 
using a random signal as speech signal s(n). In the 
second strategy, to simulate real conditions, the same 
filter is used with a real speech signal as s(n). Table I 
shows the parameters used in the implementation of 
different algorithms. 

B. Simulation Results 

In order to assess our proposed method, we 
compare the simulation results of algorithms based on 
different subjective and objective criteria. In the first 
group of experiments, we compare performances of 
different algorithms by plotting their learning curves 
(i.e., MSE plots). For this case, we use random signal 
with normal distribution as clean input signal s(n), 
white noise as noise signal u(n), a 30th-order type I 
FIR  

 

Figure 2: The nonlinear step-size function, fstep-size, plotted 
as a function of w. 

TABLE I.  Parameters used for the implementation of 
algorithms 

Algorithms Parameters Range of 
Values 

LMS, NLMS, APA step size (µ1) 0.05 

 

FLMS, NFLMS, 
FAPA 

step size (µ1) 0.05 

fractional step-size (µf) 0.05 

fractional derivation 
order (v) 

0.5 

NLMS, NFLMS   0.001 

APA, FAPA P 20 

 
filter as acoustic path, and a 30th-order adaptive filter. 
Fig. 3 shows the corresponding plots for the LMS, 
FLMS, NLMS, and NFLMS algorithms, obtained by 
averaging the results over 500 runs. As the result of 
this simulation shows, the NFLMS algorithm 
 

converges faster than other algorithms. Fig. 4 shows 
the corresponding plots for the APA and FAPA 
algorithms, obtained by averaging the results over 500 
runs. As it is shown, our proposed method (i.e., 
FAPA) converges faster than the other algorithm. 
Finally, Fig. 5 shows the MSE plots for the LMS, 
FLMS, NLMS, NFLMS, APA and FAPA algorithms, 
obtained again by averaging the results over 500 runs. 
Here, it is clearly seen that the proposed method (i.e., 
FAPA) converges faster than other algorithms. 

In the second group of simulations, we 
investigate the performance of the proposed method 
for the case of real speech signals. For this purpose, 
we consider the LMS, FLMS, NLMS, NFLMS, APA, 
and FAPA methods as adaptive filters. The 
evaluations of the methods are performed by 
inspecting the quality of enhanced speech signal both 
in objective and subjective manner. In this part of 
simulations, we use room impulse response to 
simulate real conditions. As noise signal, babble noise 
with SNRs of −10 dB, −5 dB, 0 dB, 5 dB, and 10 dB 
and white noise with SNRs of −10 dB, −5 dB, 0 dB, 5 
dB, and 10 dB are used. 

As objective evaluation criteria, we use the 
segmental SNR and PESQ tests [17], [18]. The results 
are shown in Figures 6, 7, 8, and 9 for different noise 
sources and different input SNR values. The results 
are averaged among 10 speech signal mixtures. As it 
can be seen from the figures, speech enhanced by 
FAPA has the best quality, compared with other 
methods. This is in accordance with the MSE 
evaluation results obtained by using random clean 
signal. 

In order to assess the algorithms by subjective 
tests, we use the MUlti Stimulus test with Hidden 
Reference and Anchor (MUSHRA), which is an   
ITU-R Recommendation BS.1534-1 [19] as 
implemented in [20], [21]. The subjects (i.e., human 
listeners) are provided with test utterances plus one 
reference and one hidden anchor, and are asked to rate 
the different signals on a scale of 0 to 100, where 100 
is the best score. The listeners are permitted to listen 
to each sentence several times and always have access 
to the clean signal reference. The test signals are the 
same as those, used for the objective evaluation. Two 
types of noises (i.e., white noise and babble noise) are 
used in our listening tests. A total of 14 listeners (4 
females and 10 males between ages of 18 to 60) have 
participated in these tests. Figures 10 and 11 show the 
results of subjective listening tests for each algorithm 
and different noise types.  

By examining the results of listening tests, we 
observe that the FAPA method produces the highest 
speech quality in speech enhancement system, as 
compared with other simulated algorithms. The 
superior performance of the FAPA method is in 
agreement with the results obtained during the 
objective evaluation tests, and is again in accordance 
with the MSE learning curves obtained by random 

clean signal. 
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Fig. 3: MSE plots of LMS, FLMS, NLMS, and NFLMS 
with random input noise and 30-order FIR filter as acoustic 

path, averaged over 500 generations. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-55

-50

-45

-40

-35

-30

-25

-20

MSE PLOT for APA

Iterations

M
S

E
 (

d
B

)

 

 

APA

FAPA

 

Fig. 4: MSE plots of APA and FAPA with random input 
noise and 30-order FIR filter as acoustic path, averaged 

over 500 generations.. 
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Fig. 5: MSE plots of LMS, FLMS, NLMS, NFLMS, APA, 
and FAPA with random input noise and 30-order FIR filter 

as acoustic path, averaged over 500 generations. 
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Fig. 6: PESQ-improvement of the enhanced speech 
obtained by LMS, FLMS, NLMS, NFLMS, APA, and 

FAPA using babble input noise and 30-order FIR filter as 
acoustic path under different SNR conditions. 
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Fig. 7: SNR-improvement of the enhanced speech obtained 
by LMS, FLMS, NLMS, NFLMS, APA, and FAPA using 
babble input noise and 30-order FIR filter as acoustic path 

under different SNR conditions. 
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Fig. 8: PESQ-improvement of the enhanced speech 
obtained by LMS, FLMS, NLMS, NFLMS, APA, and 

FAPA using white input noise and 30-order FIR filter as 
acoustic path under different SNR conditions. 
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Fig. 9: SNR-improvement of the enhanced speech obtained 
by LMS, FLMS, NLMS, NFLMS, APA, and FAPA using 
white input noise and 30-order FIR filter as acoustic path 

under different SNR conditions. 

 

Fig. 10: Averaged MOS results of the enhanced speech 
obtained by LMS, FLMS, NLMS, NFLMS, APA, and 

FAPA using babble input noise and 30-order FIR filter as 
acoustic path under different SNR conditions. 

 

 

Fig. 11: Averaged MOS results of the enhanced speech 
obtained by LMS, FLMS, NLMS, NFLMS, APA, and 
FAPA using white input noise and 30-order FIR filter as 
acoustic path under different SNR conditions. 

 

 

 

 

 

 

V. CONCULSIONS 

In this paper, we propose new adaptive filtering 
method by combining the idea of fractional derivative 
term in updating equations and conventional affine 
projection algorithm. The new algorithm has been 
employed in the area of dual-channel speech 
enhancement.  

To evaluate the performance of this new idea, 
we first examine the simulations of learning curves 
(i.e., MSE plots) using random signal instead of clean 
speech signal. As it can be inferred by the behaviors 
of the MSE plots, it can be verified that the idea of 
fractional derivative leads to improved performance 
in the sense of convergence rate in the adaptive 
speech enhancement. The comparison of MSE results 
shows clearly that the FAPA algorithm has the best 
performance among all the simulated algorithms. 

In the second stage, we use a real speech signal 
in our simulations and investigate the quality of the 
enhanced speech, both objectively and subjectively. 
To this aim, we compare FAPA, as selected by the 
MSE evaluations, with other methods. As objective 
evaluation, SNR and PESQ improvements obtained 
by different methods are compared. From objective 
results, we conclude that the speech enhanced by 
FAPA has the highest quality. 

To assess the performance of FAPA subjectively, 
listening tests are conducted for the same enhanced 
speech signals as used in the objective evaluation. 
The results show once again that the speech signal 
enhanced by FAPA gives the highest quality among 
the all simulated methods. 

In general, the powerful aspect of our proposed 
method appears to be its high convergence rate which 
has not been proved mathematically in this work. This 
step can be considered as our future work. 
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